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Marginally turbulent flow in a square duct
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A direct numerical simulation of turbulent flow in a straight square duct was
performed in order to determine the minimal requirements for self-sustaining
turbulence. It was found that turbulence can be maintained for values of the bulk
Reynolds number above approximately 1100, corresponding to a friction-velocity-
based Reynolds number of 80. The minimum value for the streamwise period
of the computational domain is around 190 wall units, roughly independently of
the Reynolds number. We present a characterization of the flow state at marginal
Reynolds numbers which substantially differs from the fully turbulent one: the
marginal state exhibits a four-vortex secondary flow structure alternating in time
whereas the fully turbulent one presents the usual eight-vortex pattern. It is shown
that in the regime of marginal Reynolds numbers buffer-layer coherent structures
play a crucial role in the appearance of secondary flow of Prandtl’s second kind.

1. Introduction
Turbulent flow in a plane channel has been extensively studied and many aspects

of its dynamics are fairly well understood, at least as far as the near-wall region is
concerned. The flow in a duct with a rectangular cross-section, on the other hand, has
received much less attention. Although its geometry is only slightly more complex, it
exhibits important additional phenomena, the most prominent being the appearance
of turbulence-driven secondary motion in the cross-sectional plane. In this paper
we will address the canonical case of ducts with square section. The appearance of
secondary mean motion of a turbulent flow in such a geometry has been known since
the experiments by Nikuradse (1926) who was the first to measure it indirectly. One
significant consequence of such motion is a non-negligible deformation of the primary
mean velocity profile. Previous experimental measurements of the flow in a square
duct (Brundrett & Baines 1964; Gessner 1973; Melling & Whitelaw 1976) as well as
direct numerical simulations (Gavrilakis 1992; Huser & Biringen 1993) have provided
useful reference data for the mean velocities and the Reynolds stress tensor. However,
those studies mainly focused on the budget of the averaged flow equations, while not
providing much information on the underlying physical mechanisms responsible for
the formation of secondary flow. Although some insight into vortex kinematics in
duct flow was provided by Kawahara & Kamada (2000), a detailed investigation of
the dynamics of coherent structures in such a flow has to our knowledge not been
reported in the literature.

Galletti & Bottaro (2004) and Bottaro, Soueid & Galletti (2006) employed
a parabolized linear formulation (in the latter reference a simple mixing-length
model accounts for the Reynolds stresses) to describe the transient growth of a
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perturbation field which under certain circumstances resembles the experimentally
observed secondary flow pattern in the square duct. However, their linear analysis
of the mean field seems to be more appropriate to model a transitional path toward
turbulence rather than a fully developed turbulent state.

In the present study we numerically investigate marginal turbulence states in a
square duct, meaning that we focus on flows developing at low Reynolds numbers
just above the minimum value for sustained turbulence. The rationale behind this
choice is that in this regime the cross-stream scale of coherent structures should be
comparable with the duct width, which should be ideal to elucidate possible direct
relationships between well-known buffer-layer coherent structures (i.e. streaks and
streamwise vortices) and cross-stream mean motion.

The first objective of the research was the quantitative determination of marginal
states. Subsequently, we performed a detailed study to characterize these states. It is
found that the marginal state is substantially different from the fully turbulent one,
displaying periods of strong turbulent activity and quasi-laminar behaviour switching
from one pair of facing walls to the other. Finally, we addressed the generation
mechanism of turbulent mean secondary motion from the point of view of coherent-
structure dynamics at marginal Reynolds numbers.

2. Numerical methodology
We consider the flow in a straight duct with square cross-section of half-width h.

The Cartesian coordinates are x, y, z with the origin located in the centre of the
duct and x defined along the streamwise direction. The flow field is assumed to be
streamwise periodic over a period of length Lx and a constant flow rate is imposed
at each time step (Pinelli et al. 2007).

We solve the incompressible Navier–Stokes equations with the velocity components
u, v, w (along directions x, y and z, respectively) and the pressure p (normalized
by a unit density) as the independent variables. An incremental-pressure projection
method is used for solving the momentum equation and imposing the divergence-
free condition in three fractional steps. The temporal integration is based on the
Crank–Nicholson scheme for the viscous terms and a three-step low-storage Runge–
Kutta method for the nonlinear terms, including the pressure gradient. This time
discretization is identical to the one described by Verzicco & Orland (1996) with a
time accuracy of O(�t2) in the interior of the domain. On the walls the impermeability
constraint is exactly enforced, while – due to the use of the fractional step scheme –
the no-slip condition is satisfied up to an error of O(�t2 ν), where ν is the kinematic
viscosity. In all our simulations this ‘slip error’ was kept below 10−4 times the bulk
flow velocity by adjusting the time step �t accordingly.

The flow variables are expanded in terms of truncated Fourier series in the
streamwise direction and Chebyshev polynomials in the two cross-stream directions.
We use a collocated grid arrangement in physical space, constructed from an
equidistant spacing in the x-direction and the Chebyshev–Gauss–Lobatto points
in y, z. The nonlinear terms in the momentum equation are evaluated in physical
space whereas the explicit contribution of the linear terms is evaluated in spectral
space. The fields are transformed back and forth by means of fast Fourier transform
and fast cosine transform. De-aliasing according to the 2/3-rule is performed in the
streamwise direction. For each streamwise Fourier mode we need to solve four two-
dimensional Helmholtz equations at every Runge–Kutta substep; the corresponding
solution is carried out by a fast diagonalization technique applied to the discrete
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Laplace operator (Haldenwang et al. 1984). This approach yields four spurious
pressure modes (Leriche & Labrosse 2000), which, however, do not affect the velocity
field since their first derivatives in all three coordinate directions vanish identically at
all interior collocation nodes. For the purpose of post-processing the pressure field,
these modes can simply be filtered in Chebyshev space.

We impose a time-independent volume flow rate Q which is related to the streamwise

velocity and the bulk velocity ub by: Q =
∫ h

−h

∫ h

−h
u dy dz = ub 4h2. As a consequence,

the Reynolds number based upon the bulk velocity and duct half-width, Reb = ub h/ν,
is fixed a priori, while the wall-shear stress fluctuates in time. The instantaneous wall-
shear stress at each cross-section is defined as follows:

τw(x, t) = − ν

8h

(∫ h

−h

[
∂u

∂y

]y=h

y=−h

dz +

∫ h

−h

[
∂u

∂z

]z=h

z=−h

dy

)
. (2.1)

For later convenience, let us define a number of averaging operators. The time
average is denoted by an overbar, e.g. τ̄w = 1/(t2 − t1)

∫ t2

t1
τw dt , the streamwise average

is defined as 〈u〉x(y, z, t)= (1/Lx)
∫ Lx

0
u dx, the average over the cross-section is defined

as 〈u〉yz(x, t) = 1/(4h2)
∫ h

−h

∫ h

−h
u dy dz, and the average over the streamwise direction

and time as 〈u〉(y, z) = 〈u〉x . Fluctuations are defined with respect to the streamwise-
and-time average, u = 〈u〉 + u′, and with respect to the streamwise average only,

u = 〈u〉x + u′′. Finally we introduce the mean friction velocity uτ =
√

〈τw〉 which
is used to define the usual viscous wall units indicated in the following by the
superscript +.

For all simulations presented below we have enforced the following resolution
requirements: the time step was chosen such that the CFL number is below 0.3,
the number of Fourier modes such that the streamwise grid spacing �x+ is below
15, the number of Chebyshev modes such that the maximum grid size in the cross-
stream directions �y+ = �z+ is below 5.7. In most cases, especially the marginal ones
which are of particular interest here, the spatial and temporal resolution was in fact
considerably higher.

Finally, note that all the statistical data, presented in the paper, have been obtained
by considering an accumulation time of at least 1500h/ub.

A complete description of the numerical technique and an exhaustive validation is
given in Pinelli et al. (2007).

3. Identification of the critical conditions
The purpose of the minimization study is to determine the critical parameter

values which allow sustained turbulence. Here the two significant quantities are the
Reynolds number and the length of the streamwise period. We have performed
simulations for various values of both quantities, covering a total of 70 parameter
points in the range 0.79 � Lx/h � 25.13 and 320 � Reb � 2600. The results from this
series provide quantitative information about the scaling properties of the coherent
structures involved in the regeneration mechanism of near-wall turbulence in the duct
geometry.

Each simulation was initiated with a fully developed turbulent flow field taken
from a previous run. Care was taken to vary as little as possible the values of the
parameters between successive simulations (Jiménez & Moin 1991). The computations
were run until either the flow relaminarized or a minimum of 2000 bulk flow time
units had elapsed, while the sustenance of turbulence was verified by monitoring the
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Figure 1. (a) Variation of the wall friction with the bulk Reynolds number: �, present results
(turbulent); – – – –, empirical formula of Jones (1976); ——, laminar flow. (b) The variation of
the wall friction with the streamwise period for three Reynolds numbers: �, Reb = 1400; �,
Reb = 1753; �, Reb = 2205. Filled symbols are for laminar flow.

temporal variation of the box-averaged kinetic energy fluctuations. This lower limit
for the integration time is comparable with the values used for the determination of
the critical conditions in plane channel flow by Jiménez & Moin (1991) and in pipe
flow by Faisst & Eckhardt (2004).

Figure 1(a) shows the variation of the wall friction in terms of the friction-velocity-
based Reynolds number, Reτ = uτh/ν, as a function of the bulk Reynolds number Reb.
The curve for the laminar state is given by Reτ =

√
a Reb with a = 3.3935 (Tatsumi &

Yoshimura 1990). It can be observed that a turbulent state can be maintained only
above Reb = 1077. This value should be compared to the corresponding value of 1000
for the plane channel configuration (Carlson, Widnall & Peeters 1982) and 1125 for
pipe flow (Faisst & Eckhardt 2004).

At this critical point we obtain Reτ = 77 which means that the width of the duct
in turbulent conditions corresponds to at least 154 viscous units. In other words,
the critical Reynolds number sets a lower limit for the lateral extent of the duct
in wall scaling. This is an important difference with respect to the plane geometry,
where the spanwise size of the computational domain can be freely adjusted and,
therefore, the minimization experiment can be used to determine the natural scaling
of near-wall structures in the spanwise direction (Jiménez & Moin 1991; Hamilton,
Kim & Waleffe 1995). Conversely, the presence of a pair of sidewalls in the square
duct always imposes a spanwise constraint upon the flow developing near a given
wall plane. The implications of these geometrical constraints for the dynamics of the
coherent structures will be discussed in more detail in § 5. Figure 1(a) also shows
that the friction velocity in the turbulent regime grows almost linearly with the bulk
velocity. Our data are very well represented by the empirical correlation of Jones
(1976), f −1/2 = 2 log10(2.25 Reb f 1/2) − 0.8, where the friction factor f is defined as
f = 8u2

τ /u
2
b. Note that in the turbulent regime slightly different values for Reτ are

obtained at a given value of Reb when the streamwise length Lx is varied. This
dependence of the wall friction upon the length of the streamwise period is shown in
figure 1(b) for three different values of the bulk flow Reynolds number. In all cases,
Reτ exhibits a mild peak just above the critical value for Lx and then tends towards
an asymptotic value for larger domains. We will return to this point at the end of the
section.
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Figure 2. Map of turbulent (�) and laminar (�) flow states in the plane of the length of the
streamwise period of the computational box (measured in wall units) and the bulk Reynolds
number. The dashed lines indicate the boundary of the region where turbulence can be
sustained.

The map of turbulent/laminar flow states in the plane spanned by Reb and L+
x

is given in figure 2. It can be observed that the critical value for the streamwise
period is roughly independent of the Reynolds number when expressed in wall
units. In particular, the shortest streamwise period with sustained turbulence for
the three values Reb = 1400, 1753, 2205 corresponds to values just below 200 wall
units (L+

x = 168, 193, 187 respectively). As a comparison, the corresponding length
in outer scales varies by a factor 1.33 over the same range (Lx/h= 1.68, 1.57, 1.26),
which suggests that wall scaling is more adequate for the minimal periodic cell. For
the plane channel configuration, Jiménez & Moin (1991) have observed a similar
although slightly higher minimum length of 250–350 wall units. However, for a
consistent comparison between the two geometries one should consider that mean
skin friction is not uniform along the perimeter in the case of the duct (cf. Gavrilakis
1992, figure 7). Using a different definition of the global skin friction (e.g. the value
at the wall bisector) would lead to higher estimates of critical L+

x , closer to the value
of Jiménez & Moin (1991).

For computational boxes moderately larger than the critical value, at all times
quasi-streamwise vortices span most of the domain, thus increasing the skin friction
value. Conversely, for even longer boxes the population of vortices per unit length
diminishes, thus decreasing the integral value of skin friction. This reasoning explains
the local maxima of skin friction as observed in figure 1(b).

4. Characterization of the marginal state
4.1. Secondary flow patterns

The commonly observed pattern of mean secondary flow in the cross-plane of the
square duct consists of eight vortices, one counter-rotating pair being located above
each of the four wall planes. Their sense of rotation is such that the secondary flow
on the diagonals is directed towards the corners (cf. Gavrilakis 1992).

In the course of the present investigation it was observed that the flow under
marginal conditions (i.e. at Reynolds numbers close to the critical values given in
figure 2) can exhibit a pattern with only four dominant mean secondary vortices over
substantial intervals of time, as shown in figure 3. The four-vortex state is characterized
by two pairs of counter-rotating vortices associated with a pair of opposite walls. The
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Figure 3. Contour lines of the primary mean flow 〈u〉 (with increment max〈u〉/5) and vectors
of the secondary mean flow 〈v〉, 〈w〉 for Reb = 1205 and Lx/h = 2π: (a) averaging interval
771h/ub; (b) a different interval with length 482h/ub; (c) long-time integration including both
previous intervals (1639h/ub). Vectors are shown for every third grid point.

sense of rotation of the individual vortices is consistent with the usual eight-vortex
pattern. For symmetry reasons, four-vortex patterns with two different orientations
exist, corresponding to secondary flow vortices located near the planes z/h = ±1 and
y/h= ±1, respectively (see figure 3a, b). We have observed that the flow state does
switch from one orientation to the other during the temporal evolution, leading to a
long-time-average mean flow exhibiting the common eight-vortex pattern as shown
in figure 3(c).

Flow visualizations of instantanous flow fields exhibiting the four-vortex state show
that turbulence activity is concentrated mostly on one pair of opposite walls, while
the flow near the other two walls is much more quiescent. In this case, a single
low-velocity streak is located around the bisector of each of the ‘active walls’, whereas
typically only very weak structures are detected on the other pair of parallel walls.
Near the active walls, each streak is flanked by staggered streamwise vortices of the
corresponding sign, as often observed in plane channel flows (see Jeong et al. 1997).
Therefore, the mean flow near the active wall exhibits a pair of counter-rotating
streamwise vortices when the flow field is averaged over intervals of O(100) bulk flow
time units. We shall further discuss the relation of streaks and vortices with the mean
flow in § 4.2.

In order to quantitatively identify the four-vortex state, we compute the integral
of the square of the streamwise-averaged streamwise component of vorticity in the
cross-sectional plane, the integration extending over one of the four triangular regions
delimited by the diagonals, namely

Si(t) =

∫ ∫
Ωi

〈ωx〉2
x dy dz, (4.1)

where the triangular regions Ωi are defined as

Ω1 : {(y, z) | y < z ∩ y < −z}, Ω3 : {(y, z) | y > z ∩ y > −z},
Ω2 : {(y, z) | y < z ∩ y > −z}, Ω4 : {(y, z) | y > z ∩ y < −z}.

}
(4.2)
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Figure 4. Temporal evolution of the indicator function. (a) I : ——, Reb = 2205;
– – – –, Reb = 1077. In both cases Lx/h = 4π. (b) The average period between zero-crossings
of the indicator function I versus the Reynolds number for cases with long domains
(Lx/h = 10.97 . . . 12.57).

When considering non-laminar states, we introduce the following dimensionless
indicator function:

I (t) ≡ S1 + S3 − S2 − S4

S1 + S2 + S3 + S4

, (4.3)

bounded by −1 � I � 1. When the value of I is close to zero, the streamwise vorticity is
equipartitioned between the two triangular regions associated with the walls at y = ±1
and the two associated with the walls at z = ±1; this is true for an eight-vortex state.
Conversely, large absolute values of I appear for the four-vortex state, with the sign
of I indicating whether the vorticity 〈ωx〉x is concentrated near the walls z = ±1
(I < 0) or y = ±1 (I > 0). For the averaged flow patterns shown in figure 3(a, b, c) the
indicator function takes the values I = −0.760, 0.779, −0.003, respectively.

Figure 4(a) shows the temporal variation of the indicator I for two cases with
Reb =1077 and 2205 (in both cases the length of the domain is 4πh). At the higher
value of Reb the indicator fluctuates around I = 0 with a low amplitude and a high
frequency, implying that the flow is always in the conventional eight-vortex state.
For lower Reb, however, the indicator deviates significantly from I = 0, and its sign
changes after relatively long intervals of the order of 100h/ub, as can also be seen in
figure 4(b). This latter behaviour indicates that the flow at this marginal Reynolds
number exhibits the four-vortex state with both orientations occurring during the
observation interval. For a duct with infinite streamwise extent, one would observe
spatial cells of finite length with a mean four-vortex pattern. Overall, the mean over
the infinite length would lead to a standard eight-vortex mean secondary flow and
therefore the indicator I will tend to zero for Lx � h.

The dependence of the amplitude of the fluctuations of I on the Reynolds number
can be concluded from figure 5(a). Just above the critical Reynolds number, the
r.m.s. value of the indicator is very high (I ′ ≈ 0.43), then decreasing rapidly for
Reb � 1250 and reaching a value of I ′ ≈ 0.1 for the highest Reynolds number
currently investigated. The four-vortex state is therefore clearly a phenomenon only
encountered at marginal Reynolds numbers. Figure 5(b) shows the amplitude of the
streamwise-averaged wall shear fluctuations, which clearly exhibits a dependence on
the Reynolds number much like the fluctuations of the indicator function. This is a
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Figure 5. The r.m.s. values of (a) the indicator function I , and (b) the streamwise-averaged
wall shear fluctuations, τ ′

w , with respect to the time-averaged value 〈τw〉, both as a function of
the Reynolds number for cases with long domains (Lx/h = 10.97 . . . 12.57).

strong indication that cross-stream structures are correlated with the behaviour of
the streaks (i.e. streamwise motion) which are directly responsible for the wall shear
fluctuations.

4.2. Coherent structures

In order to determine whether there is a direct relation between coherent structures
and mean secondary flow, we have performed a vortex eduction study. Coherent
vortices have been detected by means of the criterion proposed by Kida & Miura
(1998): vortex cores are associated with low-pressure regions and an additional
condition for swirling motion without the need to introduce any threshold value. We
have applied this method to the flow in each cross-sectional plane of a number of
instantaneous flow fields. In our study the locations of vortex centres are found by
searching for local pressure minima in planes (y, z) and checking whether these points
satisfy the swirl condition D < 0, where D is the discriminant of the velocity gradient
tensor of the flow in the cross-plane, i.e. D = (∂v/∂y−∂w/∂z)2/4+(∂v/∂z)(∂w/∂y). To
eliminate the effect of very low-intensity vortices we filtered all the contributions lower
than 1% of maximum streamwise vorticity. The positions of coherent vortex centres
were then stored along with the corresponding local value of the streamwise vorticity.
The resulting probability of occurrence of vortex centres is shown in figure 6(a, b) for
Reb = 1143. We observe that the local maxima of the p.d.f. of the vortex positions bear
a striking resemblance to the mean secondary flow vorticity pattern accumulated over
the same interval (cf. figure 6c). At marginal Reynolds numbers, where the coherent
structures are highly constrained by the geometry, the instantaneous streamwise
vortices are locked into their respective positions on either side of the wall bisector,
consistent with the signs of the secondary flow vorticity.

The same argument applies to the spanwise position of the velocity streaks. We
have verified that for a marginal Reynolds number the p.d.f. of the low-velocity
streak location (identified by the local minima of the wall-normal derivative of the
streamwise velocity component at the wall) exhibits a sharp peak around the wall
bisector (figure not shown). This result is in turn consistent with the shape of the
primary mean flow which is such that the wall shear has a local minimum at the
wall bisector. Therefore, a low-velocity streak is found to be statistically constrained
to a narrow range of spanwise positions between two counter-rotating streamwise
vortices.
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Figure 6. Statistical data for a case with Reb = 1143 and Lx/h = 4π, accumulated from
960 flow fields over a time interval of 915h/ub. (a) Contours indicating 0.1(0.1)0.9 times
the maximum probability of occurrence of vortex centres with positive streamwise vorticity
(shaded increasingly from white to black); (b) the probability for vortices with negative
streamwise vorticity; (c) the average streamwise vorticity over the same interval (isocontours
with −0.8(0.2)0.8 times the maximum absolute value, negative values dashed).

5. Concluding remarks
Spectral direct numerical simulation of turbulent square duct flow has been

performed at marginal to low Reynolds numbers for various streamwise domain
extents. Critical values for these two parameters, allowing for self-sustaining
turbulence, have been determined. In such a marginal regime, short-time-averaged
velocity fields are found to exhibit a four-vortex state instead of the usual eight-vortex
secondary flow pattern found at higher Reynolds numbers. It is also found that for
marginal Reynolds numbers the most probable cross-sectional positions of the centres
of coherent vortices match the mean secondary vorticity pattern. Moreover, it has
been shown that the deformation of the mean streamwise velocity profile is due to the
presence of a persistent low-velocity streak preferentially located over the centre of
the edges. The matching between preferential positions of quasi-streamwise vortices
and velocity streaks with the structure of the averaged flow field is clear evidence that,
for marginal Reynolds numbers, the secondary flow pattern is a direct consequence
of coherent buffer-layer structures.

The relationship between coherent structures and secondary flow also gives a
possible explanation for the appearance of a four-vortex state in the regime of
marginal Reynolds numbers. In this case, the dimension of the cross-section in wall
units is below what would be needed to accommodate a complete minimal turbulent
cycle on all four walls (Jiménez & Moin 1991). Therefore, just two facing walls can
be alternately selected to give rise to a complete turbulent regeneration mechanism,
while the other two faces remain in a relative quiescent state.

Two basic questions remain. The first concerns the validity of the proposed
mechanism when increasing the Reynolds number. At higher Reynolds numbers
we need to deal with the appearance of motion at different scales whereas in the
marginal case the cross-stream scale of coherent structures is comparable with the
duct width. The second question is related to the reason for the preferential location
of coherent structures. A possible heuristic explanation is based on a simple kinematic
analysis of the interaction of streamwise vorticity with a corner. Consider a generic
vortex aligned with the mean flow and initially located on the diagonal close to one
of the corners. Its interaction with the impermeable wall can be modelled using three
image vortices and potential theory (Kawahara & Kamada 2000): the vortex would
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migrate because of the induced velocity field towards a position which is consistent
with the mean streamwise vorticity field observed in the real flow. In other words, there
exists an automatic selection mechanism associating the position of each streamwise
vortex to its sign of rotation. We will address the quantitative importance of such a
mechanism and the scaling with the Reynolds number in future work.

Collaboration between the two groups was supported by the Center of Excellence
for Research and Education on Complex Functional Mechanical Systems (COE
program of the Ministry of Education, Culture, Sport, Science, and Technology of
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